DOI: 10.1089/cyber.2015.0221

The Game Transfer Phenomena Scale: An Instrument for Investigating the Nonvolitional Effects of Video Game Playing

Angelica B. Ortiz de Gortari, PhD, Halley M. Pontes, MSc, and Mark D. Griffiths, PhD

Abstract

A variety of instruments have been developed to assess different dimensions of playing video games and its effects on cognitions, affect, and behaviors. The present study examined the psychometric properties of the Game Transfer Phenomena Scale (GTPS) that assesses nonvolitional phenomena experienced after playing video games (i.e., altered perceptions, automatic mental processes, and involuntary behaviors). A total of 1,736 gamers participated in an online survey used as the basis for the analysis. Confirmatory factor analysis (CFA) was performed to confirm the factorial structure of the GTPS. The five-factor structure using the 20 indicators based on the analysis of gamers' self-reports fitted the data well. Population cross-validity was also achieved, and the positive associations between the session length and overall scores indicate the GTPS warranted criterion-related validity. Although the understanding of Game Transfer Phenomena is still in its infancy, the GTPS appears to be a valid and reliable instrument for assessing nonvolitional gaming-related phenomena. The GTPS can be used for understanding the phenomenology of post-effects of playing video games.

Introduction

THE PROLIFERATION OF VIDEO GAMES has resulted in an L increased interest in investigating their effects. A variety of standardized assessment tools for measuring different dimensions of playing video games have been developed. 1-3 Current assessment tools can be categorized into two broad types. First, there are instruments that assess in-game behaviors and phenomena experienced while gaming. For example, scales for assessing subjective sense of presence, dispositional flow,⁵ game engagement,⁶ cyber-sickness or simulator sickness malaise (e.g., fatigue, headache, eyestrain, etc.), ^{7,8} motivations for playing, ^{3,9–11} character attachment, ¹² and identification with avatars. ¹³ Second, there are instruments or tasks that have been developed to understand better the psychosocial effects of gaming. These have either focused on examining dysfunctional gaming involvement employing modified diagnostic criteria for gambling, substance-induced disorders, and, more recently, Internet Gaming Disorder (IGD) to measure gaming addiction, 1,14–17 or explain the cognitive, affective, or behavioral effects of playing violent video games.

Some of the better known are the homonymous decision task that assesses risk-related cognitions by completing a list of words, ¹⁸ and the Taylor Competitive Reaction Time task that assesses the level of hostility based on the intensity of the punishment provided to an opponent (e.g., aversive noise

blasts, making them eat spicy sauce). ^{19,20} Measures and behavioral tests of aggression have been criticized for the way the results have been interpreted and their lack of external validity, ^{21–23} although some evidence supports the generalization of the results to real-world aggression. ²⁴ Furthermore, the influence of unrealistic depictions of the real world in media on the perception of the real world have been assessed. ²⁵ Cultivation effects (i.e., generalized influence on estimates of the probability of events, and judgments that reflect beliefs) have only been found in direct relation to video game content. In light of the debate about video game playing and its potential effects on gamers, it is important to develop new psychometrically sound assessment tools for examining the direct outcomes of playing video games, thus facilitating future examination of causal effects.

Research into Game Transfer Phenomena (GTP)—a multimodal research approach for investigating the transfer of video game experiences into the real world by examining altered perceptions, spontaneous mental processes, and behaviors and actions experienced mostly after stopping playing²⁶—suggests that the effects of video games tend to be directly related to the content and experiences in the video game.^{27–31} The GTP research approach has explored the relationship between video game structural characteristics (e.g., visual or aural features) and in-game activities directly related to gamers' transfer of experiences. The GTP

2 ORTIZ DE GORTARI ET AL.

framework makes distinction between the inner and outer manifestation of phenomena, and whether they are interpreted as self-generated (e.g., inner-speech, auditory hallucinations) and if they occurred voluntarily or involuntarily (e.g., deliberate use of video game slang for amusement, involuntary verbal outbursts). GTP are divided in three main modalities: altered perceptions, automatic mental processes, and behaviors and actions. ^{26–29}

Altered perceptions are understood as perceptions and/or sensations related to the video game when not playing, and can take place in all the sensory modalities, across modalities, or be multisensory. Altered perceptions related to playing video games have been identified in the following dimensions^{27–32}:

- Altered visual perceptions include mind visualizations, pseudo-hallucinatory experiences (e.g., seeing game icons above people's heads), visual adaptations (e.g., perceiving objects or environments distorted), and visual misperceptions (e.g., confusing physical objects with those in the game).
- Body and other altered perceptions experiences include proprioception (e.g., sensations of body or limb movement), tactile perception (e.g., pushing buttons of gamepad), and cronoceptive perception (e.g., feeling time slow down).
- Altered auditory perceptions include auditory involuntary imagery (e.g., hearing auditory cues in the head), auditory hallucinations (e.g., hearing sounds coming from objects), inner speech (e.g., hearing one's own thoughts preserving features from video game character's voices), and auditory misperceptions (e.g., confusing physical sounds with those from the game).

Automatic mental processes manifest as thoughts, urges, and automatic mental actions. These range from thoughts about the game (e.g., thinking continuously about the game) to cognitive biases (e.g., experiencing attention bias toward game-related cues, jumping to conclusions bias), and source monitoring errors (e.g., confusing what an in-game character said with what a person said). 27,31,32

Behaviors and actions can range from experiencing involuntary motor activations (e.g., involuntary movements of limbs) to performing actions inspired by the video game or changes in behavior influenced by the video game (e.g., avoiding specific places, minicking video game characters, having verbal outbursts).

Given the aforementioned theoretical underpinnings of GTP, the aim of the present study was to examine the psychometric properties of the Game Transfer Phenomena Scale (GTPS), the first-ever theory-driven scale developed for measuring nonvolitional phenomena such as altered perceptions (i.e., visual, bodily, and auditory), automatic mental processes, and behaviors and actions experienced after playing video games, and understanding the underlying mechanisms of video game effects.

Method

Participants and procedure

A total of 1,736 gamers were recruited online, and split into two groups for the purposes of factor analysis (i.e., Sample 1 [S1], n=1,078; Sample 2 [S2], n=658) using opportunity sampling and an online survey methodology. Participants

were recruited via online gaming forums, Facebook, and meetup.com groups. Ethical approval for the study was granted by the research team's university ethics committee.

Measures

Socio-demographics: The survey included questions regarding participants' sex, age, and occupation.

Gaming profile: Questions were included about typical video game session length and frequency of video game playing, as well as gamer type (i.e., newbie, causal, hard-core, or professional).

GTPS: The GTPS included 20 items comprising five different dimensions: altered visual perceptions, altered body perceptions, altered auditory perceptions, automatic mental processes, and behaviors and actions. Exemplars of GTP experiences were also provided to participating gamers. The items in the scale were originally developed for investigating the initial prevalence of GTP and their associated factors. 26,33,42 These were derived based on a theoretical framework concerning GTP developed from previous analyses of more than 1,600 gamers' self-reports. ^{26–31} The participants' responses are rated on a 5-point Likert scale where 1= "never," 2="once," 3="sometimes," 4="many times," and 5="all the time." Examples of items included: "seen video game images with eyes open when not playing," "experienced bodily sensations of movement as in a video game,' "heard game music when not playing," "wanted or felt the urge to do something in real life after seeing something that reminded of the video game," "acted differently in real life situation because an experience in a video game." (The final version of the GTPS can be obtained by contacting the first author.)

The following modalities were assessed in the GTPS via five first-order latent variables. The altered perceptions modality assesses (a) visual experiences (visualizing or seeing images, visual pseudo-hallucinations, distorted perceptions and misperceptions of physical objects and environments); (b) auditory experiences (auditory involuntary imagery, auditory/ verbal hallucinations or inner speech and auditory misperceptions; and (c) body-related experiences (motion sickness, tactile hallucinations, other body-related altered perceptions/ sensations, and altered perception of time). The mental processes modality assesses automatic mental processes such as (a) perseverative mental actions after playing; (b) thoughts and urges about either wanting to use video game elements in a real-life context or performing something from the game in physical contexts; and (c) source monitoring errors between video game and real-life events. The behaviors and actions modality assesses (a) involuntary movements of limbs elicited by automatic associations, (b) verbal outbursts, (c) performing behaviors influenced by a video game, and (d) change of behavior due to previous video game experiences.

Statistical analysis and analytical strategy

Statistical analysis comprised (a) descriptive statistics of the main sample's characteristics and (b) a psychometric examination of the GTPS. In order to assess the scale's psychometric properties, validity (i.e., construct, criterion-related, and population cross-validity) and reliability (i.e., internal consistency and factor determinacy) were scrutinized. Moreover, construct validity was investigated by performing a confirmatory factor analysis (CFA) on the GTPS in S1; criterion-related validity

was assessed by examining the bootstrapped correlation coefficients with bias-corrected accelerated 95% confidence intervals (i.e., Pearson product–moment correlation coefficients) between the GTPS overall scores and participants' selfreported video game session length across both samples. Population cross-validity was further investigated by performing an additional CFA for replication purposes on S2. Finally, reliability analysis comprised an in-depth examination of the Cronbach's alpha of the GTPS instrument as a whole and also across the five subscales in both samples, while factor score determinacies for each latent variable were also computed. All the aforementioned analyses were performed on both MPLUS v7.2 (Muthén & Muthén, Los Angeles, CA) and IBM SPSS Statistics for Windows v20 (IBM Corp., Armonk, NY).

Results

Descriptive statistics

Table 1 summarizes the samples' main socio-demographic characteristics. Most participants were male (S1 92.7%; S2

TABLE 1. SOCIO-DEMOGRAPHIC CHARACTERISTICS OF SAMPLE 1 AND SAMPLE 2

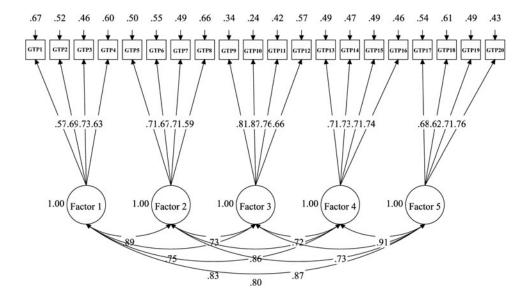
	Sample				
Variables	1	2			
N	1,078	658			
Sex (male, %)	868 (92.7)	478 (80.9)			
Age group $(n, \%)$	` ′	` ′			
18–22 years	472 (52.9)	241 (42.1)			
23–27 years	231 (25.9)	152 (26.5)			
28–32 years	130 (14.6)	87 (15.2)			
33–38 years	54 (6)	45 (7.9)			
39–43 years	1 (0.1)	29 (5.1)			
44–48 years	3 (0.3)	12 (2.1)			
49–53 years	1 (0.1)	2(0.3)			
≥54 years	1 (0.1)	5 (0.9)			
Occupational status $(n, \%)$	1 (0.1)	3 (0.7)			
Full-time employment	217 (23)	198 (33.2)			
Part-time employment	62 (6.6)	62 (10.4)			
	85 (9)	30 (5)			
Self-employed	40 (4.2)	49 (8.2)			
Unemployed					
Homemaker	6 (0.6)	12 (2)			
Student	518 (54.8)	231 (38.8)			
Disabled to work	2 (0.2)	$\frac{1}{12} (0.2)$			
Other occupations	15 (1.6)	13 (2.2)			
Self-reported type of player		6 (0.0)			
Newbie	19 (1.8)	6 (0.9)			
Casual	291 (27)	234 (35.7)			
Hardcore	700 (65)	366 (55.8)			
Professional	67 (6.2)	50 (7.6)			
Average video game sessio					
<1 hour	46 (4.3)	19 (2.9)			
1–2:59 hours	484 (44.9)	271 (41.2)			
3–5:59 hours	444 (41.2)	284 (43.2)			
6–7:59 hours	67 (6.2)	42 (6.4)			
>8 hours	36 (3.3)	42 (6.4)			
Video gaming weekly frequ	nency (n, %)				
Less than once	31 (2.9)	18 (2.7)			
Once	54 (5)	36 (5.5)			
2–4 times	459 (42.6)	186 (28.3)			
5–6 times	240 (22.3)	153 (23.3)			
Everyday	293 (27.2)	265 (40.3)			

80.9%) and were aged between 18 and 22 years (S1 52.9%; S2 42.1%). Additionally, most participants reported being a student (S1 54.8%; S2 38.8%). With regard to participants' gaming-related habits and behaviors, the majority were hardcore players (S1 65%; S2 55.8%), played video games mostly between 3 and 6 hours (S1 41.2%; S2 43.2%), and reported a weekly gaming frequency of 2-4 days a week (S1 42.6%; S2 28.3%). However, in S2, 40.3% (n = 265) reported playing video games every day (see Table 1).

Construct validity

In order to address the construct validity of the GTPS and also further verify the suitability of the five theoretical factors proposed, a CFA with maximum likelihood with robust standard errors estimation method (MLR) was performed on S1 (n = 1,078) on the 20 GTPS indicators. Because there is no

TABLE 2. CONFIRMATORY FACTOR ANALYSIS OF THE 20 ITEMS OF THE GAME TRANSFER PHENOMENA SCALE^a


	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Items ^b					
1	0.57				
	0.70				
2 3 4 5 6 7 8	0.73				
4	0.63				
5		0.71			
6		0.67			
7		0.71			
8		0.59			
9			0.81		
10			0.87		
11			0.76		
12			0.67		
13				0.71	
14				0.73	
15				0.71	
16				0.74	
17					0.68
18					0.63
19					0.71
20					0.76
Correlation bei	tween facto	ors			
1	1				
2	0.89	1			
2 3 4	0.75	0.73	1		
4	0.83	0.86	0.72	1	
5	0.80	0.87	0.73	0.91	1
Further psycho	metric info	ormation			
Factor	0.93	0.94	0.95	0.94	0.94
determinacie					
Mean	2.05	2.01	2.65	2.53	2.39
SD	0.90	0.95	1.10	1.10	1.03

^aInstructions: Have you ever experienced any of the following: visual Game Transfer Phenomena (GTP), body sensation GTP, auditory GTP, automatic GTP, behavior GTP?

bItem wording was omitted for the sake of clarity. The final version of the GTPS is available upon request.

Factor 1, altered visual perceptions; Factor 2, altered body perceptions; Factor 3, altered auditory perceptions; Factor 4, automatic mental processes; Factor 5, actions and behaviors.

4 ORTIZ DE GORTARI ET AL.

FIG. 1. Graphical representation of the theoretical and empirical model of the Game Transfer Phenomena (GTP) construct.

consensus on the fit indexes for evaluating structural equation models, ^{34–36} the goodness of fit was based on several fit indexes using the following thresholds: χ^2/df (1; 4), root mean square error of approximation (RMSEA) (0.05; 0.08), RMSEA 90% confidence interval with its lower limit close to 0 and the upper limit <0.08, p-close >0.05, standardized root mean square residual (SRMR) (0.05; 0.08), comparative fit index (CFI), and Tucker-Lewis fit index (TLI) (0.90; 0.95). In light of the aforementioned assumptions, all 20 indicators were entered into a five first-order factorial solution (see Fig. 1). As a result, the analysis of the first-order five factors model provided an acceptable model fit for the GTPS with acceptable item loadings (i.e., ≥ 0.50). More specifically, $\chi^2(160) = 628.4$, $\chi^2/df = 3.9$; RMSEA = 0.052 [90% CI 0.048– 0.056], p-close = 0.203; SRMR = 0.040, CFI = 0.94; TLI = 0.93 (see Table 2 and Fig. 1).

Criterion-related validity

Recent empirical findings suggested that GTP experiences are heightened by greater video game session length.³³ Therefore, an observed positive association between participants' session length and the overall score obtained in the GTPS would be indicative of the scale's criterion-related validity, since these variables are expected to co-vary at both the theoretical and empirical level. As shown in Table 3, positive statistically significant associations between video game session length and the overall GTP scores were found in both S1 and S2 (see Table 3).

Table 3. Bootstrapped^a Correlation Matrix with Bias-Corrected Accelerated 95% Confidence Interval Between GTPS Overall Scores and Video Game Session Length

Measure	Sample	GTPS overall scores	BCa 95% CI	R^2
VSL VSL	1 2	0.264* 0.249*	[0.202; 0.325] [0.169; 0.328]	

^aBootstrap results are based on 10,000 bootstrap samples. *p < 0.01.

BCa, bias-corrected accelerated; VSL, video game session length.

Population cross-validity

Population cross-validity was assessed by examining if the results obtained in one sample (i.e., S1) of a population could also be replicated in another sample (i.e., S2) drawn from the same population, for example Raju et al.³⁷ and Raju et al.³⁸ Therefore, in order to obtain evidence for population crossvalidity, a second CFA was performed on another sample recruited from the same population (i.e., S2, n=658) to test the initially underlying conceptual assumptions (i.e., first-order model with five latent variables) verified in the first CFA. Moreover, the results obtained in S2 ($\gamma^2[160] = 492.7$, $\gamma^2/df = 3.1$; RMSEA = .056 [90% CI 0.051–0.062]; p-close = 0.140: SRMR=0.047; CFI=0.93; TLI=0.92) were highly consistent and comparable with the results previously found in S1, providing further empirical evidence that the five-factor model fits the data well, thus warranting population crossvalidity.

Reliability

As shown in Table 4, the GTPS internal consistency as measured by the Cronbach's alpha was satisfactory (i.e., ≥ 0.60) at several levels. On most occasions, internal consistency could not be improved by excluding any items, and inter-item correlations were relatively high (i.e., ≥ 0.30) in general. With regard to the GTPS factor determinacy, this coefficient reflects the degree of the correlation among the

Table 4. Reliability Analysis of the GTPS Across Sample 1 (n=1,078) and Sample 2 (n=658)

	Internal	Factor				
Sample	consistency $(\alpha)^a$	1	2	3	4	5
1	0.94	0.74	0.76	0.85	0.81	0.79
2	0.93	0.71	0.79	0.85	0.82	0.79

Cronbach's alpha could not be improved upon exclusion of any item on most occasions.

^aThe Cronbach's alpha provided relates to all 20 GTPS items (i.e., whole scale).

indicators and their respective factors, with values of ≥ 0.80 being indicative of a strong correlation. Accordingly, factor determinacies in the present study ranged from 0.93 (i.e., Factor 1) to 0.95 (i.e., Factor 3; see Table 2), further supporting the GTPS reliability (see Table 4).

Discussion

The purpose of the present study was to examine the psychometric properties of the first-ever instrument developed for measuring nonvolitional phenomena (i.e., altered visual perceptions, body and other altered perceptions, altered auditory perceptions, automatic mental processes, and behaviors and actions) related to video game playing. Accordingly, the first-order model including the five dimensions proposed for the GTPS was confirmed given the results obtained from the CFA in both samples yielded acceptable fit indices and factor loadings. Additionally, the validity of the GTPS at the construct, criterion-related, and population cross-validity level was warranted, and its internal consistency was adequate.

As suggested by previous research, 41 game-biased perceptions and associations with video game content comprise physical objects (i.e., gaming memories triggered by objects or people), sounds and music (i.e., gaming memories triggered by auditory cues or cravings for playing), vocabulary and expressions (i.e., use of slang, abbreviations and expressions from a game), daydreams (i.e., fantasies and thoughts with game contents that pop up), and night dreams (i.e., dreams about the game or insertion of video game elements into dreams). In the present study, the five dimensions of the GTPS were found to be comparable to a certain degree to those related to the concept of game-biased perceptions. Studies examining GTP have demonstrated that game-related cues do not simply elicit memories of the game, but they also trigger, for example, altered perceptions (e.g., seeing menus while in a conversation because gamers expect to see them as in the game).^{26,28}

The present findings relating to the GTPS are still preliminary in nature, and therefore additional rigorous psychometric testing of the GTPS is paramount. A first descriptive analysis using the GTPS showed a very high prevalence of GTP (97%) when using the criteria to endorse at least 1 of the 20 GTPS items, and most participants endorsed 6–10 different types of GTP (95%) (Ortiz de Gortari AB, Griffiths MD. Prevalence and characteristics of Game Transfer Phenomena: a descriptive survey study. Int J Hum-Comput Int. In review.). When interpreting the GTPS scores, it is recommended that researchers take into consideration the frequency (i.e., number of occurences) of GTP experiences for assessing the level of GTP strength, as well as correlating with variables that assess distress or impairment in areas of functioning for understanding the effects of video games. In addition, the prevalence of GTP should be investigated using more representative samples of gamers.

GTP appear to be atemporal and are relatively common phenomena among gamers. Analysis of gamers' self-reports has shown that gamers can perceive GTP as something both positive and/or negative. ^{26–29} In a survey of more than 2,300 gamers, GTP were perceived as more pleasant than unpleasant, and some gamers even wanted the experiences to reoccur. However, one in five (20%) reported that they had

experienced distress and/or impairment in important areas of functioning at some point because of GTP. It has been suggested that the content of the game, the frequency of GTP, and the circumstances where GTP were experienced play a role in the consequences of GTP. 26,42 Further research should be undertaken to understand better why some gamers experience distress due to GTP experiences while others do not. Moreover, the majority of the gamers surveyed who reported having experienced GTP were from a nonclinical population and had never used psychoactive substances 33 (or were under the influence of them) when GTP occurred (Ortiz de Gortari and Griffiths. In review.). However, GTP have been significantly associated with medical conditions, and a small number of those who have experienced GTP (3.5%) consider they are problem gamers or suffer from gaming addiction.³³ Gamers who have experienced GTP reported playing excessively, but playing excessively is not a requisite for experiencing GTP. Future studies should assess the associations between GTP as measured by the GTPS and other measurable gamingrelated phenomena (e.g., immersion, game engagement, gaming addiction, etc.).

Limitations

The present study has a number of limitations. Currently, there are no similar measures to further assess the validity of the GTPS (e.g., concurrent validity). Additionally, it is necessary to ascertain the invariance of GTPS to determine if its psychometric properties hold across both sexes and different cultural contexts. Only one indicator was used to assess criterion validity (i.e., length of gaming session). However, this is the only factor that has been consistently found to be associated with GTP in previously published empirical studies. Further criterion testing could be done once other associated factors found in future empirical GTP studies have been carried out. The present study was based on retrospective self-report data, and is therefore prone to well-known biases (e.g., recall bias, social desirability bias). Future studies could perhaps assess to what extent GTP experiences may be related to normal or abnormal functioning and gaming-related behaviors. The development of the GTPS provides a psychometric framework for further exploratory and empirical research into GTP and associated behaviors.

Conclusion

The findings of the present study demonstrate that GTP as measured by the GTPS represents a validly and reliably approach at several levels. The GTPS is the first instrument developed that assesses a broad variety of post-play gaming-related sensorial perceptions, cognitions, and behaviors. The GTPS may be an additional useful instrument to employ in studies examining video game engagement and/or the underlying mechanism of problematic gaming or gaming addiction, and may help to differentiate between nonvolitional phenomena induced by gaming and symptoms of psychopathology.

Acknowledgments

The authors are thankful to the gamers who participated in the survey. 6 ORTIZ DE GORTARI ET AL.

Author Disclosure Statement

No competing financial interests exist.

References

- 1. Pontes H, Király O, Demetrovics Z, et al. The conceptualisation and measuramente of DSM-5 Internet Gaming Disorder: the development of the IGD-20 test. PloS One 2014; 10:e110137.
- 2. Sprong M, Buono F, Bordieri J, et al. Establishing the behavioral function of video game use: development of the video game functional assessment. Journal of Addictive Behaviors, Therapy & Rehabilitation 2014; 6:2–6.
- Yee N. Motivations for play in online games. CyberPsychology & Behavior 2006; 9:772–775.
- Witmer BG, Singer MJ. Measuring presence in virtual environments: a presence questionnaire. Presence 1998; 7: 225–240.
- Wang CKJ, Liu WC, Khoo A. The psychometric properties of dispositional flow scale-2 in Internet gaming. Current Psychology 2009; 28:194–201.
- Brockmyer JH, Fox CM, Curtiss KA, et al. The development of the Game Engagement Questionnaire: a measure of engagement in video game-playing. Journal of Experimental Social Psychology 2009; 45:624–634.
- Bouchard S, Robillard G, Renaud P. Revising the factor structure of the Simulator Sickness Questionnaire. Annual Review of CyberTherapy & Telemedicine 2007; 5:128–137.
- Kennedy RS, Lane NE, Berbaum KS, et al. Simulator Sickness Questionnaire: an enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology 1993; 3:203–220.
- Yee N, Ducheneaut N, Nelson L. (2012) Online gaming motivations scale: development and validation. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. New York: ACM, pp. 2803–2806.
- Lafrenière M-AK, Verner-Filion J, Vallerand RJ. Development and validation of the Gaming Motivation Scale (GAMS). Personality & Individual Differences 2012; 53:827–831.
- 11. Sprong M, Buono F, Bordieri J, et al. Establishing the behavioral function of video game use: development of the video game functional assessment. Journal of Addictive Behaviors, Therapy & Rehabilitation 2014; 3:4.
- 12. Lewis ML, Weber R, Bowman ND. "They may be pixels, but they're MY pixels": developing a metric of character attachment in role-playing video games. CyberPsychology & Behavior 2008; 11:515–518.
- 13. Li DD, Liau AK, Khoo A. Player–avatar identification in video gaming: concept and measurement. Computers in Human Behavior 2013; 29:257–263.
- Demetrovics Z, Urbán R, Nagygyörgy K, et al. The development of the Problematic Online Gaming Questionnaire (POGQ). PloS One 2012; 7:e36417.
- Vadlin S, Aslund C, Nilsson KW. Development and content validity of a screening instrument for gaming addiction in adolescents: the Gaming Addiction Identification Test (GAIT). Scandinavian Journal of Psychology 2015:56:458–466.
- Pontes HM, Griffiths MD. Measuring DSM-5 Internet gaming disorder: development and validation of a short psychometric scale. Computers in Human Behavior 2015; 45:137–143.
- Lemmens JS, Valkenburg PM, Gentile DA. The Internet Gaming Disorder Scale. Psychological Assessment 2015; 27:567–582.

 Fischer P, Greitemeyer T, Morton T, et al. The racing-game effect: why do video racing games increase risk-taking inclinations? Personality & Social Psychology Bulletin 2009; 35:1395–1409.

- 19. Barlett C, Branch O, Rodeheffer C, et al. How long do the short-term violent video game effects last? Aggressive Behavior 2009; 35:225–236.
- Hasan Y, Bègue L, Bushman BJ. Viewing the world through "blood-red tinted glasses": the hostile expectation bias mediates the link between violent video game exposure and aggression. Journal of Experimental Social Psychology 2012; 48:953–956.
- Ferguson CJ. Evidence for publication bias in video game violence effects literature: a meta-analytic review. Aggression & Violent Behavior 2007; 12:470–482.
- Ritter D, Eslea M. Hot sauce, toy guns, and graffiti: a critical account of current laboratory aggression paradigms. Aggressive Behavior 2005; 31:407–419.
- Ferguson CJ, Rueda SM. Examining the validity of the modified Taylor competitive reaction time test of aggression. Journal of Experimental Criminology 2009; 5:121–137.
- Anderson CA, Bushman BJ. External validity of "trivial" experiments: the case of laboratory aggression. Review of General Psychology 1997; 14–19.
- 25. Potter JW. (2012) Media effects. Santa Barbara, CA: Sage.
- Ortiz de Gortari AB. Exploring Game Transfer Phenomena: a multimodal research approach for investigating video games' effects. Doctoral dissertation, Nottingham Trent University, 2015.
- 27. Ortiz de Gortari AB, Griffiths MD. Automatic mental processes, automatic actions and behaviours in Game Transfer Phenomena: an empirical self-report study using online forum data. International Journal of Mental Health & Addiction 2014; 12:1–21.
- 28. Ortiz de Gortari AB, Griffiths MD. Altered visual perception in Game Transfer Phenomena: an empirical self-report study. International Journal of Human–Computer Interaction 2014; 30:95–105.
- 29. Ortiz de Gortari AB, Griffiths MD. Auditory experiences in Game Transfer Phenomena: an empirical self-report study. International Journal of Cyber Behavior, Psychology & Learning 2014; 4:59–75.
- 30. Ortiz de Gortari AB, Aronsson K, Griffiths MD. (2013) Game Transfer Phenomena in video game playing: a qualitative interview study. In Zheng R, ed. *Evolving psychological and educational perspectives on cyber behavior*. Hershey, PA: IGI Global, pp. 177–180.
- 31. Ortiz de Gortari AB, Aronsson K, Griffiths MD. Game Transfer Phenomena in video game playing: a qualitative interview study. International Journal of Cyber Behavior, Psychology & Learning 2011; 1:15–33.
- Ortiz de Gortari AB. Targeting the real life impact of virtual interactions: the Game Transfer Phenomenon 42 video games players' experiences. Master's dissertation. Stockholm University, 2010.
- 33. Ortiz de Gortari AB, Griffiths MD. Game Transfer Phenomena and its associated factors: an exploratory empirical online survey study. Computers in Human Behavior 2015; 51:195–202.
- 34. Bollen KA, Long JS. (1993) Introduction. In Bollen KA, Long JS, eds. *Testing structural equation models*. Newbury Park, CA: Sage, pp. 1–9.
- Boomsma A. Reporting analyses of covariance structures. Structural Equation Modeling: A Multidisciplinary Journal 2000; 7:461–483.

- 36. Hoyle RH, Panter AT. (1995) Writing about structural equation models. In Hoyle RH, ed. *Structural equation modeling: concepts, issues and application*. Thousand Oaks, CA: Sage, pp. 158–176.
- 37. Raju NS, Bilgic R, Edwards JE, et al. Methodology review: estimation of population validity and cross-validity, and the use of equal weights in prediction. Applied Psychological Measurement 1997; 21:291–305.
- 38. Raju NS, Bilgic R, Edwards JE, et al. Accuracy of population validity and cross-validity estimation: an empirical comparison of formula-based, traditional empirical, and equal weights procedures. Applied Psychological Measurement 1999; 23:99–115.
- 39. Mónok K, Berczik K, Urbán R, et al. Psychometric properties and concurrent validity of two exercise addiction measures: a population wide study. Psychology of Sport & Exercise 2012; 13:739–746.

- 40. Schembre SM, Geller KS. Psychometric properties and construct validity of the weight-related eating questionnaire in a diverse population. Obesity 2011; 19:2336–2344.
- 41. Poels K, Ijsselsteijn WA, de Kort Y. World of Warcraft, the aftermath: how game elements transfer into perceptions, associations and (day)dreams in the everyday life of massively multiplayer online role-playing game players. New Media & Society 2014; 1:1–17.

Address correspondence to: Dr. Angelica B. Ortiz de Gortari Nottingham Trent University Burton Street Nottingham, NG1 4BU United Kingdom

E-mail: angelica@gametransferphenomena.com